【单选题】【消耗次数:1】
( )称赞王维的诗画,“味摩诘之诗,诗中有画,品摩诘之画,画中有诗”。
赵孟頫
孟浩然
黄庭坚
苏东坡
参考答案:
复制
纠错
相关题目
【单选题】 “诗中有画”、“画中有诗”是对()的诗的评价。
①  杜甫
②  孟浩然
③  王维
④  李白
【单选题】 苏轼“诗中有画,画中有诗”评价的盛唐诗人是________。
①  孟浩然
②  李商隐
③  王维
④  杜牧
【判断题】 “诗中有画”是苏轼对孟浩然山水田园诗的评价。
①  正确
②  错误
【简答题】 “诗中有画”,是苏轼对盛唐诗人[填空]山水田园诗的评价。
【判断题】 85.“诗中有画”是王维诗歌创作的特点。
①  正确
②  错误
【单选题】 “诗中有画”是苏轼评价下面哪位诗人的诗作?
①  孟浩然
②  王维
③  储光羲
④  柳宗元
【判断题】 86.“诗中有画”是王安石提出的。
①  正确
②  错误
【单选题】 文艺复兴时期比较研究诗与画之区别的是:
①  达·芬奇
②  卡斯特尔维屈罗
③  莎士比亚
④  锡德尼
【单选题】 李白诗《送孟浩然之广陵》,其中的广陵指的是今天的( )。
①  南京
②  武汉
③  扬州
④  杭州
【判断题】 莱辛在其著作《汉堡剧评》中探讨了诗与画的界限
①  正确
②  错误
随机题目
【判断题】 若函数<img class=jc-formula data-tex=f\left( x \right) src=https://huaweicloudobs.ahjxjy.cn/FB6E53A56CB8DA138AA7D1A4EBCF7519.png style=vertical-align: middle;/>在区间[a,b]上二阶导数存在且小于0,则曲线<img class=jc-formula data-tex=f\left( x \right) src=https://huaweicloudobs.ahjxjy.cn/FB6E53A56CB8DA138AA7D1A4EBCF7519.png style=vertical-align: middle;/>在该区间上为凹弧。
①  正确
②  错误
【判断题】 函数的最大(小)值点一定是它的极大(小)值点。
①  正确
②  错误
【判断题】 心形线<img class=jc-formula data-tex=r=a(1+cos\theta )\quad (a0) src=https://huaweicloudobs.ahjxjy.cn/D14FF0C688244EEF0DF855C3FD4014FA.png style=vertical-align: middle;/>所围图形的面积是<img class=jc-formula data-tex=\frac { \pi }{ 2 } { a }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/FD65973FC9F149C8A8CEA2923EC5B7AE.png style=vertical-align: middle;/>.
①  正确
②  错误
【判断题】 曲线y=<img class=jc-formula data-tex=-{ x }^{ 3 }+{ x }^{ 2 }+2x src=https://huaweicloudobs.ahjxjy.cn/40FE0360A868FCA6A0A250F051164ADF.png style=vertical-align: middle;/>与x轴所围成图形的面积为1.
①  正确
②  错误
【判断题】 函数在闭区间上有定义就一定有最大值和最小值。
①  正确
②  错误
【单选题】 函数<img class=jc-formula data-tex=f\left( x \right) =(x-5){ x }^{ \frac { 2 }{ 3 } } src=https://huaweicloudobs.ahjxjy.cn/703BE7E84EC8831DCAD4056A69C392BB.png style=vertical-align: middle;/>的拐点为( )
①  -1
②  1
③  (-1,-6)
④  (1,-4)
【单选题】 <img class=jc-formula data-tex=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { (\sin { x) } }^{ 4 } } dx=(\quad \quad \quad \quad \quad ) src=https://huaweicloudobs.ahjxjy.cn/1730D741B7EECF5D75D1093CD1A3BE1B.png style=vertical-align: middle;/>
①  0
②  <img class=jc-formula data-tex=\frac { 3 }{ 8 } \pi src=https://huaweicloudobs.ahjxjy.cn/198C55A27EBB3489D5FD603C7663F1A9.png style=vertical-align: middle;/>
③  <img class=jc-formula data-tex=\frac { 3\pi }{ 5 } src=https://huaweicloudobs.ahjxjy.cn/4AF629210A71319F07D4B114AD07D9D8.png style=vertical-align: middle;/>
④  <img class=jc-formula data-tex=\frac { 3\pi }{ 16 } src=https://huaweicloudobs.ahjxjy.cn/0B7BCD282FB4BA25C1A99A8FFB316CB3.png style=vertical-align: middle;/>
【单选题】 <img class=jc-formula data-tex=\int { \frac { 1+\cos { x } }{ x+\sin { x } } } dx= src=https://huaweicloudobs.ahjxjy.cn/12EE60EA5D83D1AAC25BBBEEC99811EB.png style=vertical-align: middle;/>( )
①  <img class=jc-formula data-tex=x\sin { x+C } src=https://huaweicloudobs.ahjxjy.cn/F62DFF5D273C7FDE021699B646BFA707.png style=vertical-align: middle;/>
②  <img class=jc-formula data-tex=x\cos { x+C } src=https://huaweicloudobs.ahjxjy.cn/BD5BB9754EB9EDAC760EFC8674CF2771.png style=vertical-align: middle;/>
③  <img class=jc-formula data-tex=x\ln { x } +C src=https://huaweicloudobs.ahjxjy.cn/47E91D04C3663B8FD327A3EC08048E1F.png style=vertical-align: middle;/>
④  <img class=jc-formula data-tex=\ln { \left| x+\sin { x } \right| } +C src=https://huaweicloudobs.ahjxjy.cn/90BAD48ACFB9D79CA0F4C9F03400D955.png style=vertical-align: middle;/>
【单选题】 设<img class=jc-formula data-tex=\lim _{ x\rightarrow a }{ \frac { f\left( x \right) -f\left( a \right) }{ { (x-a) }^{ 2 } } } =-1 src=https://huaweicloudobs.ahjxjy.cn/E103C96BFF151DAC29E160A4108E93C6.png style=vertical-align: middle;/>,则在点x=a处( )
①  <img class=jc-formula data-tex=f^{ \prime }\left( a \right) src=https://huaweicloudobs.ahjxjy.cn/330C7E4F3259C338D457CB2D57CA14F4.png style=vertical-align: middle;/>存在且不为0
②  <img class=jc-formula data-tex=f\left( x \right) src=https://huaweicloudobs.ahjxjy.cn/FB6E53A56CB8DA138AA7D1A4EBCF7519.png style=vertical-align: middle;/>取得极大值
③  <img class=jc-formula data-tex=f\left( x \right) src=https://huaweicloudobs.ahjxjy.cn/FB6E53A56CB8DA138AA7D1A4EBCF7519.png style=vertical-align: middle; width: 52px; height: 26px; width=52 height=26/>取得极小值
④  <img class=jc-formula data-tex=f^{ \prime }\left( a \right) src=https://huaweicloudobs.ahjxjy.cn/330C7E4F3259C338D457CB2D57CA14F4.png style=vertical-align: middle;/>不存在
【单选题】 设<img class=jc-formula data-tex=y={ x }^{ 5 } src=https://huaweicloudobs.ahjxjy.cn/EDB88A12D54D5E69BD3D743064FFAB68.png style=vertical-align: middle;/>,则<img class=jc-formula data-tex={ y }^{ (5) } src=https://huaweicloudobs.ahjxjy.cn/5F07240F1291A5C2A46882FE1F8487C3.png style=vertical-align: middle;/>=( ).
①  0
②  x
③  5
④  5!