【单选题】
实数集合里,a =0,f (x,y)=x-y,F(x,y): x=y, G(x,y): xy。公式“<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />y(F(f(x,y),a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto />G(x,y))”的真值:
【单选题】
实数集合里,a =0,f (x,y)=x-y,F(x,y): x=y, G(x,y): xy。公式“<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />y(G(f(x,y),a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto />F(x,y))”的真值:
【单选题】
实数集合里,F(x,y): x=y, G(x,y): xy。公式“<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />y(G(x,y) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /><img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />F(x,y))”的真值:
【单选题】
自然数里,a=2,f (x,y)=x+y,g (x,y)=x·y,F (x,y): x=y。公式“<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />y(F(f(x,a),y) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto />F(f(y,a),x))”的真值:
【单选题】
公式“<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />xF(x)<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /><img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />yG(x, y)”的前束范式为:
①
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/117E6A630A0200497B87D15B90307923.png data-tex=\exists />x<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />y(F(x)<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> G(x, y))
②
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />y(F(x)<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> G(x, y))
③
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />y <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/117E6A630A0200497B87D15B90307923.png data-tex=\exists />x (F(x)<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> G(x, y))
④
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/117E6A630A0200497B87D15B90307923.png data-tex=\exists />x<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/117E6A630A0200497B87D15B90307923.png data-tex=\exists />y(F(x)<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> G(x, y))
【单选题】
自然数里,a=2,f (x,y)=x+y,g (x,y)=x·y,F (x,y): x=y。公式“<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />y<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/117E6A630A0200497B87D15B90307923.png data-tex=\exists />z(F(f(x,y),z)”的真值:
【单选题】
设个体域 D={a,b,c}, 消去谓词“<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />y(F(x) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/7BA9C8923F2F9C5684519175C6A722C4.png data-tex=\vee />G(y))”中的量词后的形式为:
①
(F(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(b)) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(c))<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge /> (G(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/7BA9C8923F2F9C5684519175C6A722C4.png data-tex=\vee />G(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/7BA9C8923F2F9C5684519175C6A722C4.png data-tex=\vee />G(c));
②
(F(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(c))<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/7BA9C8923F2F9C5684519175C6A722C4.png data-tex=\vee /> (G(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(c))
③
(F(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(c))<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> (G(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(c));
④
(F(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(c))<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge /> (G(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(c)).
【单选题】
判断公式“<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />y(F(x, y)<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> F(y, x))”的类型:
【单选题】
自然数里,a=2,f (x,y)=x+y,g (x,y)=x·y,F (x,y): x=y。公式“<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />xF(g(x,a),x)”的真值:
【单选题】
设个体域 D={a,b,c}, 消去谓词“<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />xF(x) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /><img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />yG(y)”中的量词后的形式为:
①
(F(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(b)) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(c))<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge /> (G(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/7BA9C8923F2F9C5684519175C6A722C4.png data-tex=\vee />G(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/7BA9C8923F2F9C5684519175C6A722C4.png data-tex=\vee />G(c));
②
(F(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(c))<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/7BA9C8923F2F9C5684519175C6A722C4.png data-tex=\vee /> (G(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(c))
③
(F(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(c))<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> (G(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(c))
④
(F(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />F(c))<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge /> (G(a) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(b) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(c))