【单选题】【消耗次数:1】
_______ hard work, you don’t have much chance of success.
After
Without
With
Before
参考答案:
复制
纠错
相关题目
【单选题】 If you work hard, you will be ________; but if you don’t, you will be punished.
①  relaxed
②  relieved
③  reduced
④  rewarded
【单选题】 Success results ___________ hard work, and hard work results in success.
①  from
②  in
③  by
④  with
【单选题】 You have to work hard if you want to __________ in your courses.
①  achieve
②  succeed
③  win
④  beat
【单选题】 His success[填空] hard work.
①  is due to
②  due
③  due to
④  is due
【单选题】 Don’t worry. We have _______ to finish the work carefully.
①  enough time
②  less time
③  little time
④  few times
【单选题】 His final success ( ) his years of hard work.
①  depends on
②  focuses on
③  concentrates on
④  dwells on
【单选题】 I don’t think you can work out the maths problem ___ her help.
①  since
②  unless
③  with
④  without
【单选题】 Why not buy a cheaper one, ___ you don’t have enough money?
①  since
②  because
③  for
④  though
【单选题】 When you have finished with that video tape, don’t forget to put it in my drawer, ---_____?
①  do you?
②  will you
③  can you
④  dont
【单选题】 I think his hard work will _______ big success in the end.
①  take up
②  put out
③  get by
④  result in
随机题目
【单选题】 设无向图中有 6 条边, 3 度与 5 度顶点各一个, 其余的都是 2 度顶点, 则该图有几个顶点:
①  3;
②  4;
③  5;
④  7。
【单选题】 设n (n 3 3)阶无向树 T 的最大度?(T)至少为几:
①  1;
②  2;
③  3;
④  4。
【单选题】 设有向图D = áV, E?, 其中 V={v1, v2, v3, v4, v5}, E={áv4, v1?, áv1, v1?,áv1, v2?,áv1, v3?, áv3, v1?, áv5, v3?},则v1的邻域 N(v1) =
①  {v3, v4};
②  {v2, v3,v4};
③  {v1, v2, v3, v4};
④  {v2,v3}。
【单选题】 设无向树 T 有3个 2 度分支点, 2 个 3 度分支点, 其余的都是 叶子, 问 T 共有多少个顶点:
①  7;
②  8;
③  9;
④  10。
【单选题】 在 k (k 3 2)个长度大于等于 3的无向圈之间,至少应添加多少条新无向边,才能使所得无向图为欧拉图:
①  k;
②  2k;
③  3k;
④  4k。
【单选题】 设无向图G1 = áV1, E1?, 其中, V1 = {v1, v2, v3, v4, v5}, E1 = {(v1, v2), (v2, v3), (v3, v4), (v3, v3), (v4, v5)},则v2的邻域 N(v2)为:
①  {v1, v2, v3};
②  {v1, v3};
③  {v1, v2, v3, v4, v5};
④  {v2}。
【单选题】 下列正整数列中,哪个不可以当成无向图的顶点度序列:
①  (2, 2, 2, 2, 3, 3, 4, 4);
②  (1,3, 2, 2);
③  (2, 2, 2, 2);
④  (2, 2, 3, 3, 4, 4, 5)。
【单选题】 对于6 阶 3-正则图,边数 m=9,共有几种非同构的情况:
①  1;
②  2;
③  3;
④  4。
【单选题】 设无向树 T 有 8 片树叶, 2 个 3 度分支点, 其余的分支点都是 4 度顶点, 问 T 有几个 4 度分支点:
①  1;
②  2;
③  3;
④  4。
【单选题】 设 G 是 n (n32)阶 n + 1 条边的无向简单连通图, 则以下哪个性质不正确:
①  存在顶点 v, d(v)33;
②  所以顶点度数之和等于2(n + 1);
③  至少有两个顶点不是割点;
④  奇度顶点个数可以不是偶数个。