【单选题】
设A为<img class=jc-formula data-tex=m\times n src=https://huaweicloudobs.ahjxjy.cn/68A6AD364CE4B73E12720634B9824451.png style=vertical-align: middle;/><img class=jc-formula data-tex=(m\neq n) src=https://huaweicloudobs.ahjxjy.cn/B9EF51541C5ED1FB51DA946B312C7510.png style=vertical-align: middle;/>阶矩阵,则齐次线性方程组AX=0只有零解的充要条件是A的秩
【单选题】
设<img class=jc-formula data-tex={ \alpha }_{ 1 },{ \alpha }_{ 2 } src=https://huaweicloudobs.ahjxjy.cn/F7A9179A3B95E4A689239C902E737612.png style=vertical-align: middle;/>是齐次线性方程组 Ax=0的两个解向量, <img class=jc-formula data-tex={ \beta }_{ 1 },{ \beta }_{ 2 } src=https://huaweicloudobs.ahjxjy.cn/677A921FCF83E4151EDA6846AC691BB6.png style=vertical-align: middle;/>是非齐次线性方程组 Ax=b的两个解向量, 则 ( )
①
<img class=jc-formula data-tex={ \alpha }_{ 1 }+{ \alpha }_{ 2 } src=https://huaweicloudobs.ahjxjy.cn/98BBDE0A4EFEE09BB8F566CD2715C8F7.png style=vertical-align: middle;/>是 Ax=0的解;
②
<img class=jc-formula data-tex={ \beta }_{ 1 }-{ \beta }_{ 2 } src=https://huaweicloudobs.ahjxjy.cn/BF39B64659F7FEB5CBDDEC9EA5850379.png style=vertical-align: middle;/>是Ax=0的解;
③
<img class=jc-formula data-tex={ \alpha }_{ 1 }+{ \beta }_{ 1 } src=https://huaweicloudobs.ahjxjy.cn/51DC9D39B9996C3CB0ABB213D8FA6EA0.png style=vertical-align: middle;/>是 Ax=0的解;
④
<img class=jc-formula data-tex={ \alpha }_{ 1 }-{ \beta }_{ 1 } src=https://huaweicloudobs.ahjxjy.cn/6F764E5023C0764878568584418D58B9.png style=vertical-align: middle;/>是 Ax=b的解.
【判断题】
<img class=jc-formula data-tex=A src=https://huaweicloudobs.ahjxjy.cn/53F870B8D448BB3DB08A67264B6329F9.png style=vertical-align: middle;/>为<img class=jc-formula data-tex=m\times n src=https://huaweicloudobs.ahjxjy.cn/68A6AD364CE4B73E12720634B9824451.png style=vertical-align: middle;/>型矩阵,则当<img class=jc-formula data-tex=R(A)=n src=https://huaweicloudobs.ahjxjy.cn/1E513F3E976CAD5E8D5ACEEE51943C73.png style=vertical-align: middle;/>时,<img class=jc-formula data-tex=Ax=b src=https://huaweicloudobs.ahjxjy.cn/B2E6B7847F647AEBDF186E16122B2E40.png style=vertical-align: middle;/>有唯一解.
【单选题】
设X1,X2,…Xn,Xn+1, …,Xn+m是来自正态总体<img class=jc-formula data-tex=N(0,{ \sigma }^{ 2 }) src=https://huaweicloudobs.ahjxjy.cn/5F85A9479574F671A476ECFF7F47F247.png style=vertical-align: middle;/>的容量为n+m的样本,则统计量<img class=jc-formula data-tex=V=\frac { m\sum _{ i=1 }^{ n }{ { X }_{ i }^{ 2 } } }{ n\sum _{ i=n+1 }^{ n+m }{ { X }_{ i }^{ 2 } } } src=https://huaweicloudobs.ahjxjy.cn/61B10ED827B04BDD4B3EC8ACA075898E.png style=vertical-align: middle; width: 65px; height: 76px; width=65 height=76/>服从的分布是
①
<img class=jc-formula data-tex=F(m,n) src=https://huaweicloudobs.ahjxjy.cn/10F45AC7D780FDD9D3EA561DE348F46A.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=F(n-1,m-1) src=https://huaweicloudobs.ahjxjy.cn/00EBE527303368C1B3C812DF3FF09671.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=F(n,m) src=https://huaweicloudobs.ahjxjy.cn/A8C103B816AE78F7C4C180719AA5FC9B.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=F(m-1,n-1) src=https://huaweicloudobs.ahjxjy.cn/15659246991246BEFEF7E59082F57DD8.png style=vertical-align: middle;/>
【判断题】
若n元齐次线性方程组<img class=jc-formula data-tex=AX=0 src=https://huaweicloudobs.ahjxjy.cn/CEC806624F9D642E698219EC94F94B3E.png style=vertical-align: middle;/>满足<img class=jc-formula data-tex=\gamma (A)=\gamma n src=https://huaweicloudobs.ahjxjy.cn/0ADC9242DEEADE8779114B83DECEE2AB.png style=vertical-align: middle;/>,则它有基础解系.
【单选题】
设前提: p <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />q, r <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> q. 结论: r <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />p. 则推理的形式结构为:
①
(p <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />q) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge /> (r <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> q) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge /> r <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />p.
②
(p <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge /> r<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge /> r <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />q <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />q<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge /><img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />p).
③
(p <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge /> r <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />q <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />q) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> (r <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />p).
④
(p <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />q) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge /> (r <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> q) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> (r <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />p).
【单选题】
设<img class=jc-formula data-tex=R({ A }_{ 4\times 6 })=2 src=https://huaweicloudobs.ahjxjy.cn/001149D0545130C3A9616B572DCD538A.png style=vertical-align: middle;/>,则齐次线性方程组AX=0的基础解系中所含向量的个数是
【单选题】
设 F(x):x 为有理数, R(x):x 为实数, G(x):x 是整数,令前提: <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x(F(x) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto />R(x)), <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/117E6A630A0200497B87D15B90307923.png data-tex=\exists />x(F(x) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(x)),则下面不是其有效结论的是:
①
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/117E6A630A0200497B87D15B90307923.png data-tex=\exists />x(R(x) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge />G(x))
②
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />xF(x)
③
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/117E6A630A0200497B87D15B90307923.png data-tex=\exists />xR(x)
④
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/117E6A630A0200497B87D15B90307923.png data-tex=\exists />xG(x)
【单选题】
设前提: p<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto />r,<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />q<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto />p,<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />r. 则下面哪个不是其有效结论:
①
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />q<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto />r
③
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />p
【单选题】
设: F(x):x 为有理数, G(x):x 为无理数, R(x)为实数, H(x)为虚数,令前提: <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x((F(x) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/7BA9C8923F2F9C5684519175C6A722C4.png data-tex=\vee />G(x)) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto />R(x)), <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x(H(x) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /><img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />R(x)),则下面不是其有效结论的是:
①
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x(<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />(F(x)<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/7BA9C8923F2F9C5684519175C6A722C4.png data-tex=\vee /> G(x)))
②
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x(H(x)<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> (<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />F(x) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge /><img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />G(x)))
③
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/117E6A630A0200497B87D15B90307923.png data-tex=\exists />x(H(x)<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> (<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />F(x) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/D50FEE5510C853C83F78D440017D8E6B.png data-tex=\wedge /><img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />G(x)))
④
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x(H(x)<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />(F(x)<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/7BA9C8923F2F9C5684519175C6A722C4.png data-tex=\vee /> G(x)))