【单选题】
设随机变量X的概率密度函数为<img class=jc-formula data-tex=p(x)=\left\{ \begin{ matrix } 0,\quad x\le 0; \\ \lambda { e }^{ -\lambda x },\quad x0, \end{ matrix } \right src=https://huaweicloudobs.ahjxjy.cn/673A7196698D34C3BFED67AC5CD0B953.png style=vertical-align: middle;/>则概率<img class=jc-formula data-tex=P(X\ge 1)=(\quad \quad \quad \quad ) src=https://huaweicloudobs.ahjxjy.cn/CE9DAE7C48453331B0C397942F243289.png style=vertical-align: middle;/><img class=jc-formula data-tex={ e }^{ \lambda } src=https://huaweicloudobs.ahjxjy.cn/6971D57DDFF990943E5A6FC1A2B3E49D.png style=vertical-align: middle;/>
①
<img class=jc-formula data-tex={ e }^{ \lambda } src=https://huaweicloudobs.ahjxjy.cn/6971D57DDFF990943E5A6FC1A2B3E49D.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex={ e }^{ -\lambda } src=https://huaweicloudobs.ahjxjy.cn/528668F491A66C08942F7B8A2553987E.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex={ 1-e }^{ \lambda } src=https://huaweicloudobs.ahjxjy.cn/C8D0164C8BDFD325DB8F3F84B0DDE7B0.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex={ 1-e }^{ -\lambda } src=https://huaweicloudobs.ahjxjy.cn/98A0C18E361D106BB0FA1189C96AAE54.png style=vertical-align: middle;/>
【单选题】
<img class=jc-formula data-tex={ X }_{ 1 },{ X }_{ 2 },\cdots { X }_{ 16 } src=https://huaweicloudobs.ahjxjy.cn/FB45D4BC62A7F1E5CCBB500AA563AB5E.png style=vertical-align: middle;/>是来自总体<img class=jc-formula data-tex=X\~ N(0,1) src=https://huaweicloudobs.ahjxjy.cn/4CB91C2E8CA3C789780977B60D9796DA.png style=vertical-align: middle;/>的一部分样本,设:<img class=jc-formula data-tex=Z={ X }_{ 1 }^{ 2 }+\cdots { +X }_{ 8 }^{ 2 }\quad \quad \quad Y={ X }_{ 9 }^{ 2 }+\cdots +{ X }_{ 16 }^{ 2 }\quad , src=https://huaweicloudobs.ahjxjy.cn/0624C67E47641B0DA44155D048054FE4.png style=vertical-align: middle;/>,则<img class=jc-formula data-tex=\frac { Z }{ Y } \~ src=https://huaweicloudobs.ahjxjy.cn/171ECD757151B4B65B3D2F70F51C747D.png style=vertical-align: middle;/>
①
<img class=jc-formula data-tex=N(0,1) src=https://huaweicloudobs.ahjxjy.cn/BB14351A5C3F2071E6A81D9EF749C547.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=t(16) src=https://huaweicloudobs.ahjxjy.cn/280FAD3A60C52DFAA5A7D4E838D7EDAD.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex={ \chi }^{ 2 }(16) src=https://huaweicloudobs.ahjxjy.cn/D02A9AED44381354A04B93BEE42AEF01.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=F(8,8) src=https://huaweicloudobs.ahjxjy.cn/5D71829BE0816D892A1E3678E402DDE2.png style=vertical-align: middle;/>
【单选题】
已知<img class=jc-formula data-tex=f^{ \prime }\left( { e }^{ x } \right) =x{ e }^{ -x } src=https://huaweicloudobs.ahjxjy.cn/A2D866EF9B5FBA9665A83096D0820160.png style=vertical-align: middle;/>,且<img class=jc-formula data-tex=f\left( 1 \right) =0 src=https://huaweicloudobs.ahjxjy.cn/8BC981E4AD6049DFBA17D01C5FB4B736.png style=vertical-align: middle;/>,则<img class=jc-formula data-tex=f\left( x \right)= src=https://huaweicloudobs.ahjxjy.cn/E5E52C6F5B52EE1A248B89A09EC905E4.png style=vertical-align: middle;/>( )
①
<img class=jc-formula data-tex={ e }^{ x } src=https://huaweicloudobs.ahjxjy.cn/00FC70E398ABF6B185393D92CDA0D7CF.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=\ln { x } src=https://huaweicloudobs.ahjxjy.cn/BADB4AEBC55B8DCE12993FC806ECF668.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex={ (\ln { x) } }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/395F2A3C69CCBAB7F79F9B36E0131FCC.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=\frac { 1 }{ 2 } { (\ln { x) } }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/E2174913DF2DD84E322B672A8C02A70A.png style=vertical-align: middle;/>
【单选题】
实数集合里,a =0,f (x,y)=x-y,F(x,y): x=y, G(x,y): xy。公式“<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />x<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/151E88A53D653382F547CC2EA5D9CEBC.png data-tex=\forall />y(G(x,y) <img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/B5623C6CA0B3BB6B271B0E5C6AD15321.png data-tex=\mapsto \neg />F(f(x,y),a))”的真值:
【单选题】
设<img class=jc-formula data-tex={ X }_{ 1 }{ ,X }_{ 2 }{ ,\cdots ,X }_{ n }\quad src=https://huaweicloudobs.ahjxjy.cn/DBF1E4597DFB758D00FD3BE5BEC42B5A.png style=vertical-align: middle;/>为<img class=jc-formula data-tex=X src=https://huaweicloudobs.ahjxjy.cn/18E2773B1E2835B209E7E51B85285E80.png style=vertical-align: middle;/>总体的一个随机样本,<img class=jc-formula data-tex=E(X)=\mu ,D(X)={ \sigma }^{ 2 }, src=https://huaweicloudobs.ahjxjy.cn/76363837713BC0EA3C7D5B8DE88D2A23.png style=vertical-align: middle;/><img class=jc-formula data-tex=\hat { \theta } ^{ 2 }=C\sum _{ i=1 }^{ n-1 }{ { ({ X }_{ i+1 }-{ X }_{ i }) }^{ 2 } } src=https://huaweicloudobs.ahjxjy.cn/D1E258883B355BBE6C9AE03C4C850EB3.png style=vertical-align: middle;/>为 <img class=jc-formula data-tex={ \sigma }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/0CF3AA226894411774EF0AB7244924B1.png style=vertical-align: middle;/>的无偏估计,C=
①
<img class=jc-formula data-tex=\frac { 1 }{ n } src=https://huaweicloudobs.ahjxjy.cn/935DBCDBF7AAD9823197D86C587EC3A5.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=\frac { 1 }{ n-1 } src=https://huaweicloudobs.ahjxjy.cn/7727714B040BDCFF96E1DCFCEFD8EBF0.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=\frac { 1 }{ 2(n-1) } src=https://huaweicloudobs.ahjxjy.cn/DFF9119B78C5726FC7943427E65E0C9A.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=\frac { 1 }{ n-2 } src=https://huaweicloudobs.ahjxjy.cn/247E111752A300C6EC448FE5CA92D90B.png style=vertical-align: middle;/>
【单选题】
设<img class=jc-formula data-tex=\xi \~ N(\mu ,{ \sigma }^{ 2 }) src=https://huaweicloudobs.ahjxjy.cn/2147D5A5BB1BD04932F9A62490D99E10.png style=vertical-align: middle;/>,其中<img class=jc-formula data-tex=\mu \quad src=https://huaweicloudobs.ahjxjy.cn/72143C62DAAAA39AB69A5506838561CA.png style=vertical-align: middle;/>已知,<img class=jc-formula data-tex={ \sigma }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/0CF3AA226894411774EF0AB7244924B1.png style=vertical-align: middle;/>未知,<img class=jc-formula data-tex={ X }_{ 1 },{ X }_{ 2 },{ X }_{ 3 } src=https://huaweicloudobs.ahjxjy.cn/4FF77F2383FA30F4DFAC4C0C4AF2E219.png style=vertical-align: middle;/>为其样本,下列各项不是 统计量的是
①
<img class=jc-formula data-tex=\frac { 1 }{ { \sigma }^{ 2 } } ({ X }_{ 1 }^{ 2 }+{ X }_{ 2 }^{ 2 }+{ X }_{ 3 }^{ 2 }) src=https://huaweicloudobs.ahjxjy.cn/BF31734B07ABA2B89563EB8446340FDB.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex={ X }_{ 1 }+3\mu \quad src=https://huaweicloudobs.ahjxjy.cn/5192835F8320C3E0CCC7F57B09D42755.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=max({ X }_{ 1 }{ ,X }_{ 2 },{ X }_{ 3 }) src=https://huaweicloudobs.ahjxjy.cn/920DB46E711859C1EF3DA8FA1D37AB7D.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=\frac { 1 }{ 3 } ({ X }_{ 1 }+{ X }_{ 2 }+{ X }_{ 3 })\quad src=https://huaweicloudobs.ahjxjy.cn/BEACA87C54812DAB7578055979EAA505.png style=vertical-align: middle;/>
【单选题】
设随机变量<img class=jc-formula data-tex=\xi src=https://huaweicloudobs.ahjxjy.cn/C2EDB2E335663DD9541AAD0FF4E4B826.png style=vertical-align: middle;/>的密度函数为<img class=jc-formula data-tex=p(x)=\left\{ 0,\quad \quad \quad x\le 0\\ c{ e }^{ -\lambda x },\quad \quad x0 \right ,(\lambda 0) src=https://huaweicloudobs.ahjxjy.cn/EDDBFE77C6CE3B3267B70F323630E24F.png style=vertical-align: middle;/>则常数c=( )
①
<img class=jc-formula data-tex=\lambda src=https://huaweicloudobs.ahjxjy.cn/14C3B57DF5E84C1472D22AC460DC2BA0.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=\frac { 1 }{ 2 } \lambda src=https://huaweicloudobs.ahjxjy.cn/3DF7DD7BC32621BD9C838B9AD1A5422E.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=2\lambda src=https://huaweicloudobs.ahjxjy.cn/A6FCED15AAB41BEC84F04394B27A4DB6.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=\frac { 1 }{ \lambda } src=https://huaweicloudobs.ahjxjy.cn/A18201C9B6B21790311E87C396F0B8F3.png style=vertical-align: middle;/>
【单选题】
若线性方程组<img class=jc-formula data-tex=\left\{ 2{ x }_{ 1 }-{ x }_{ 2 }+{ x }_{ 3 }=0\\ { x }_{ 1 }+\lambda { x }_{ 2 }-{ x }_{ 3 }=0\\ \lambda { x }_{ 1 }+{ x }_{ 2 }+{ x }_{ 3 }=0 \right \\ src=https://huaweicloudobs.ahjxjy.cn/BAC3A3DF07424460CD8947E199AD8C49.png style=vertical-align: middle;/>有非零解,则<img class=jc-formula data-tex=\lambda src=https://huaweicloudobs.ahjxjy.cn/14C3B57DF5E84C1472D22AC460DC2BA0.png style=vertical-align: middle;/>满足的条件为( )
①
<img class=jc-formula data-tex=\lambda =4 src=https://huaweicloudobs.ahjxjy.cn/7518073AE313BDB678F829D3C7231BF8.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=\lambda =-1 src=https://huaweicloudobs.ahjxjy.cn/E93BF30EF049FD40BC789FE2C4D1D47F.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=\lambda \neq 1且\lambda \neq 4 src=https://huaweicloudobs.ahjxjy.cn/85EFCF872FB86338E41D31AFFB0E4A78.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=\lambda =-1或\lambda =4 src=https://huaweicloudobs.ahjxjy.cn/96AE0074E10C93C589CFBF062C2644E7.png style=vertical-align: middle;/>
【单选题】
若<img class=jc-formula data-tex=\int { f\left( x \right) } dx={ e }^{ x }+C src=https://huaweicloudobs.ahjxjy.cn/1C031C6D574105A4E5C1ECB676F9A40E.png style=vertical-align: middle;/>,则<img class=jc-formula data-tex=f^{ \prime }\left( x \right) = src=https://huaweicloudobs.ahjxjy.cn/251DFE29198B1CB3A839957C188AB2C1.png style=vertical-align: middle;/>( )
①
<img class=jc-formula data-tex={ e }^{ x } src=https://huaweicloudobs.ahjxjy.cn/00FC70E398ABF6B185393D92CDA0D7CF.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex={ e }^{ x } src=https://huaweicloudobs.ahjxjy.cn/00FC70E398ABF6B185393D92CDA0D7CF.png style=vertical-align: middle;/>-1
③
<img class=jc-formula data-tex={ e }^{ x } src=https://huaweicloudobs.ahjxjy.cn/00FC70E398ABF6B185393D92CDA0D7CF.png style=vertical-align: middle;/>+C
④
<img class=jc-formula data-tex={ e }^{ x } src=https://huaweicloudobs.ahjxjy.cn/00FC70E398ABF6B185393D92CDA0D7CF.png style=vertical-align: middle;/>dx
【单选题】
当<img class=jc-formula data-tex=x\rightarrow { 0 }^{ + } src=https://huaweicloudobs.ahjxjy.cn/E2D9AA2CC7EB16C7E54E907F5BCFAF0A.png style=vertical-align: middle;/>时,与<img class=jc-formula data-tex=\sqrt { x } src=https://huaweicloudobs.ahjxjy.cn/73DED5C5DE4D23317071AB7F0544117D.png style=vertical-align: middle;/>等价的无穷小量是()
①
<img class=jc-formula data-tex=1-{ e }^{ \sqrt { x } } src=https://huaweicloudobs.ahjxjy.cn/A4E533ADE66EF655BE5212EF3ED1E632.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=\sqrt { 1+x } -1 src=https://huaweicloudobs.ahjxjy.cn/123D3B598ED0476E1BD7C6C510AA6C9F.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=1-\cos { \sqrt { x } } src=https://huaweicloudobs.ahjxjy.cn/3F68AC6E57534CFBC43544CFACCFD1BA.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=\ln { (1+\sqrt { x } ) } src=https://huaweicloudobs.ahjxjy.cn/1CAD5DD11658A869F09ED3A837557C9C.png style=vertical-align: middle;/>
【判断题】
设二维随机变量<img class=jc-formula data-tex=(X,Y) src=https://huaweicloudobs.ahjxjy.cn/5397F429C2F8D6C371FC104B680E7FA8.png style=vertical-align: middle;/>联合分布密度函数为:<img class=jc-formula data-tex=f(x,y)=\left\{ \begin{ matrix } k{ e }^{ -(2x+y) },x0,y0, \\ 0,其他, \end{ matrix } \right src=https://huaweicloudobs.ahjxjy.cn/5D1F623136C9C55E2DA3BF1AD4A1BD74.png style=vertical-align: middle;/>则<img class=jc-formula data-tex=P(Y\le X)=\frac { 1 }{ 3 } . src=https://huaweicloudobs.ahjxjy.cn/43776E97E8288B89F779473B4F3A8972.png style=vertical-align: middle;/>