【多选题】
<img class=jc-formula data-tex=矩阵A经过初等行变换化为B=\left( \begin{ matrix } 1 1 \begin{ matrix } 0 2 \end{ matrix } \\ 0 0 \begin{ matrix } 1 -1 \end{ matrix } \\ 0 0 \begin{ matrix } 0 0 \end{ matrix } \\ 0 0 \begin{ matrix } 0 0 \end{ matrix } \end{ matrix } \right) ,则B称为 src=https://huaweicloudobs.ahjxjy.cn/42AAD1644BAFF459D86FCDE76CE1937C.png style=vertical-align: middle;/>
【判断题】
<img class=jc-formula data-tex=\begin{ vmatrix } { a } \begin{ matrix } 0 0 \end{ matrix } \\ 0 \begin{ matrix } b 0 \end{ matrix } \\ 0 \begin{ matrix } 0 c \end{ matrix } \end{ vmatrix }=abc src=https://huaweicloudobs.ahjxjy.cn/01AE95A2C8EE661EEBCCCD8222F09D48.png style=vertical-align: middle;/>
【判断题】
<img class=jc-formula data-tex=\begin{ vmatrix } 3 \begin{ matrix } 0 0 \end{ matrix } \\ 2 \begin{ matrix } -5 2 \end{ matrix } \\ -7 \begin{ matrix } 2 1 \end{ matrix } \end{ vmatrix }=3\begin{ vmatrix } -5 2 \\ 2 -1 \end{ vmatrix } src=https://huaweicloudobs.ahjxjy.cn/28B8975C0852EE749D3C3C69740C1FC7.png style=vertical-align: middle;/>
【判断题】
<img class=jc-formula data-tex=行列式\quad \begin{ vmatrix } a \begin{ matrix } b c \end{ matrix } \\ d \begin{ matrix } e f \end{ matrix } \\ a \begin{ matrix } b c \end{ matrix } \end{ vmatrix }=0 src=https://huaweicloudobs.ahjxjy.cn/C87E34DE6102091E6EA6E6BA2DE1A9FA.png style=vertical-align: middle;/>
【单选题】
<img class=jc-formula data-tex=行列式\quad \begin{ vmatrix } 2 \begin{ matrix } -4 1 \end{ matrix } \\ 1 \begin{ matrix } -5 3 \end{ matrix } \\ 1 \begin{ matrix } -1 1 \end{ matrix } \end{ vmatrix }\quad = src=https://huaweicloudobs.ahjxjy.cn/FDF28FC6F756F3CD94C74576BA5B9CE9.png style=vertical-align: middle;/>
【单选题】
设矩阵<img class=jc-formula data-tex=A=\left( \begin{ matrix } 0 -a 1 \\ 0 1 0 \\ 1 b 0 \end{ matrix } \right) src=https://huaweicloudobs.ahjxjy.cn/CA12941BBBEEF946E902D2301041C8DB.png style=vertical-align: middle;/>,有三个线性无关的特征向量,则 [填空].
①
<img class=jc-formula data-tex=a-b=0 src=https://huaweicloudobs.ahjxjy.cn/84971DEC3F1E3D8E8580AAFC281DBEB8.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=a+b=0 src=https://huaweicloudobs.ahjxjy.cn/40A2A6CE2010C11D01B92F45A2710D18.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=a-b=1 src=https://huaweicloudobs.ahjxjy.cn/EAF3E979A61D23E44F6BFD3E6EE82A3A.png style=vertical-align: middle;/>
【判断题】
已知<img class=jc-formula data-tex=\left( \begin{ matrix } 2 -2 0 \\ -2 1 -2 \\ 0 -2 x \end{ matrix } \right) src=https://huaweicloudobs.ahjxjy.cn/53459D91D929C47CDC4C1DE109390C88.png style=vertical-align: middle;/>与<img class=jc-formula data-tex=\left( \begin{ matrix } 1 0 0 \\ 0 y 0 \\ 0 0 -2 \end{ matrix } \right) src=https://huaweicloudobs.ahjxjy.cn/6107E2BD6522BC96E32B09D3FBEBF1D9.png style=vertical-align: middle;/>相似,则<img class=jc-formula data-tex=y=0 src=https://huaweicloudobs.ahjxjy.cn/9473FAF0AD848CF40CB436C841289FF9.png style=vertical-align: middle;/>.
【判断题】
设0是矩阵<img class=jc-formula data-tex=A=\left( \begin{ matrix } 1 0 1 \\ 0 2 0 \\ 1 0 a \end{ matrix } \right) src=https://huaweicloudobs.ahjxjy.cn/E327B2D3086B84CB2729FCC61F2D9ACB.png style=vertical-align: middle;/>的特征值,则<img class=jc-formula data-tex=a=2 src=https://huaweicloudobs.ahjxjy.cn/F96AA15FCD0FA478D07B43B0759CF6E9.png style=vertical-align: middle;/>.
【简答题】
设<img class="jc-formula" data-tex="AB=A+2B,B=\left( \begin{ matrix } 1 1 0 \\ -1 2 0 \\ 0 0 -1 \end{ matrix } \right) " src="https://huaweicloudobs.ahjxjy.cn/D2F461A75F7A9F59691FA3E4BBE8CA48.png" style="vertical-align: middle;"/>,求<img class="jc-formula" data-tex="A" src="https://huaweicloudobs.ahjxjy.cn/53F870B8D448BB3DB08A67264B6329F9.png" style="vertical-align: middle;"/>
【判断题】
设二维随机变量<img class=jc-formula data-tex=(X,Y) src=https://huaweicloudobs.ahjxjy.cn/5397F429C2F8D6C371FC104B680E7FA8.png style=vertical-align: middle;/>联合分布密度函数为:<img class=jc-formula data-tex=f(x,y)=\left\{ \begin{ matrix } k{ e }^{ -(2x+y) },x0,y0, \\ 0,其他, \end{ matrix } \right src=https://huaweicloudobs.ahjxjy.cn/5D1F623136C9C55E2DA3BF1AD4A1BD74.png style=vertical-align: middle;/>则分布函数为:<img class=jc-formula data-tex=F(x,y)=\left\{ \begin{ matrix } (1-{ e }^{ -2x })(1-{ e }^{ -y }),x0,y0, \\ 0,其他。 \end{ matrix } \right src=https://huaweicloudobs.ahjxjy.cn/0926EE0FF416ADC7CE06CC37431BFB8D.png style=vertical-align: middle;/>