【单选题】
设<img class=jc-formula data-tex={ X }_{ 1 },{ X }_{ 2 },\cdots { X }_{ n } src=https://huaweicloudobs.ahjxjy.cn/566B8BC2FC4C2A51D79505D3C76655A0.png style=vertical-align: middle;/><img class=jc-formula data-tex={ X }_{ 1 },{ X }_{ 2 },\cdots { X }_{ n } src=https://huaweicloudobs.ahjxjy.cn/566B8BC2FC4C2A51D79505D3C76655A0.png style=vertical-align: middle;/>为来自正态总体<img class=jc-formula data-tex=N(\mu ,{ \sigma }^{ 2 }) src=https://huaweicloudobs.ahjxjy.cn/B48DEDE893A08C6E512BAB4F26410D01.png style=vertical-align: middle;/>简单随机样本,<img class=jc-formula data-tex=\overline { X } src=https://huaweicloudobs.ahjxjy.cn/D559D2BD167F21A01FFCD591C2AF4457.png style=vertical-align: middle;/>是样本均值,记<img class=jc-formula data-tex={ S }_{ 1 }^{ 2 }=\frac { 1 }{ n-1 } \sum _{ i=1 }^{ n }{ { ({ X }_{ i }-\overline { X } ) }^{ 2 } } src=https://huaweicloudobs.ahjxjy.cn/18E43E851BC47ACC196D5785999971D4.png style=vertical-align: middle;/>,<img class=jc-formula data-tex={ S }_{ 2 }^{ 2 }=\frac { 1 }{ n } \sum _{ i=1 }^{ n }{ { ({ X }_{ i }-\overline { X } ) }^{ 2 } } src=https://huaweicloudobs.ahjxjy.cn/7CA54C41F5A36E5793633F96993480EA.png style=vertical-align: middle;/>,<img class=jc-formula data-tex={ S }_{ 3 }^{ 2 }=\frac { 1 }{ n-1 } \sum _{ i=1 }^{ n }{ { ({ X }_{ i }-\mu ) }^{ 2 } } src=https://huaweicloudobs.ahjxjy.cn/0E2B50AF7209F35106342BF95E09DA4C.png style=vertical-align: middle;/>,<img class=jc-formula data-tex={ S }_{ 4 }^{ 2 }=\frac { 1 }{ n } \sum _{ i=1 }^{ n }{ { ({ X }_{ i }-\mu ) }^{ 2 } } src=https://huaweicloudobs.ahjxjy.cn/8D838364E08ECACB5EE3A8F8F6BB9E43.png style=vertical-align: middle;/>,则服从自由度为n-1的t分布的随机变量是
①
<img class=jc-formula data-tex=t=\frac { \overline { X } -\mu }{ { S_{ 1 } }/\sqrt { n-1 } } src=https://huaweicloudobs.ahjxjy.cn/BE2908C0E8DA4200674E5EDE9F09B1C4.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=t=\frac { \overline { X } -\mu }{ { S_{ 2 } }/\sqrt { n-1 } } src=https://huaweicloudobs.ahjxjy.cn/DB2829931E41FDA3436FD40839B22783.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=t=\frac { \overline { X } -\mu }{ { S_{ 3 } }/\sqrt { n-1 } } src=https://huaweicloudobs.ahjxjy.cn/CFB5975E17FE00E3BBB4A0CBB4292787.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=t=\frac { \overline { X } -\mu }{ { S_{ 4 } }/\sqrt { n-1 } } src=https://huaweicloudobs.ahjxjy.cn/525851C7FF632788FB386C9CBB49AEEA.png style=vertical-align: middle;/>
【单选题】
<img class=jc-formula data-tex={ X }_{ 1 },{ X }_{ 2 },\cdots { X }_{ 16 } src=https://huaweicloudobs.ahjxjy.cn/FB45D4BC62A7F1E5CCBB500AA563AB5E.png style=vertical-align: middle;/>是来自总体<img class=jc-formula data-tex=X\~ N(0,1) src=https://huaweicloudobs.ahjxjy.cn/4CB91C2E8CA3C789780977B60D9796DA.png style=vertical-align: middle;/>的一部分样本,设:<img class=jc-formula data-tex=Z={ X }_{ 1 }^{ 2 }+\cdots { +X }_{ 8 }^{ 2 }\quad \quad \quad Y={ X }_{ 9 }^{ 2 }+\cdots +{ X }_{ 16 }^{ 2 }\quad , src=https://huaweicloudobs.ahjxjy.cn/0624C67E47641B0DA44155D048054FE4.png style=vertical-align: middle;/>,则<img class=jc-formula data-tex=\frac { Z }{ Y } \~ src=https://huaweicloudobs.ahjxjy.cn/171ECD757151B4B65B3D2F70F51C747D.png style=vertical-align: middle;/>
①
<img class=jc-formula data-tex=N(0,1) src=https://huaweicloudobs.ahjxjy.cn/BB14351A5C3F2071E6A81D9EF749C547.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=t(16) src=https://huaweicloudobs.ahjxjy.cn/280FAD3A60C52DFAA5A7D4E838D7EDAD.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex={ \chi }^{ 2 }(16) src=https://huaweicloudobs.ahjxjy.cn/D02A9AED44381354A04B93BEE42AEF01.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=F(8,8) src=https://huaweicloudobs.ahjxjy.cn/5D71829BE0816D892A1E3678E402DDE2.png style=vertical-align: middle;/>
【单选题】
设<img class=jc-formula data-tex={ X }_{ 1 },\cdots ,{ X }_{ n } src=https://huaweicloudobs.ahjxjy.cn/8159F7186DE77C735294288BB1F8C1F1.png style=vertical-align: middle;/>是来自总体<img class=jc-formula data-tex=X src=https://huaweicloudobs.ahjxjy.cn/18E2773B1E2835B209E7E51B85285E80.png style=vertical-align: middle;/>的样本,且<img class=jc-formula data-tex=EX=\mu src=https://huaweicloudobs.ahjxjy.cn/39618736AA44811087C44938D156DBC3.png style=vertical-align: middle;/>,则下列是<img class=jc-formula data-tex=\mu src=https://huaweicloudobs.ahjxjy.cn/44B6A27E434C1345C3CEEB7A5249665D.png style=vertical-align: middle;/>的无偏估计的是
①
<img class=jc-formula data-tex=\frac { 1 }{ n } \sum _{ i=1 }^{ n-1 }{ { X }_{ i } } src=https://huaweicloudobs.ahjxjy.cn/C47B85208815D85D3DD90DFEC473F7FF.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=\frac { 1 }{ n-1 } \sum _{ i=1 }^{ n }{ { X }_{ i } } src=https://huaweicloudobs.ahjxjy.cn/F592094A4BE03E45216F0FE940311E37.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=\frac { 1 }{ n } \sum _{ i=2 }^{ n }{ { X }_{ i } } src=https://huaweicloudobs.ahjxjy.cn/72F0F6F417A0E32959CC0BA9BC395311.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=\frac { 1 }{ n-1 } \sum _{ i=1 }^{ n-1 }{ { X }_{ i } } src=https://huaweicloudobs.ahjxjy.cn/1C176141AB6A855E8CFD52AEF5D595C0.png style=vertical-align: middle;/>
【单选题】
设离散型随机变量X 的分布律为<img class=jc-formula data-tex=P(X=k)=\frac { A }{ { 3 }^{ k }k! } ,k=0,1,2,\cdots src=https://huaweicloudobs.ahjxjy.cn/04CAB3DAFF68A26912705C664D2D8B15.png style=vertical-align: middle;/>,则常数A应为
①
<img class=jc-formula data-tex={ e }^{ \frac { 1 }{ 3 } } src=https://huaweicloudobs.ahjxjy.cn/F6461829EACD16097EB7ECA1E0FB8301.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex={ e }^{ -\frac { 1 }{ 3 } } src=https://huaweicloudobs.ahjxjy.cn/08A3455A41E49071DE399CE99E03A8E1.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex={ e }^{ -3 } src=https://huaweicloudobs.ahjxjy.cn/E76083145705F64D30B8C539C3AC1A3D.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex={ e }^{ 3 } src=https://huaweicloudobs.ahjxjy.cn/3FFE50390A3F85E574931A20D02074F8.png style=vertical-align: middle;/>
【单选题】
设<img class=jc-formula data-tex=\xi \~ N(\mu ,{ \sigma }^{ 2 }) src=https://huaweicloudobs.ahjxjy.cn/2147D5A5BB1BD04932F9A62490D99E10.png style=vertical-align: middle;/>,其中<img class=jc-formula data-tex=\mu \quad src=https://huaweicloudobs.ahjxjy.cn/72143C62DAAAA39AB69A5506838561CA.png style=vertical-align: middle;/>已知,<img class=jc-formula data-tex={ \sigma }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/0CF3AA226894411774EF0AB7244924B1.png style=vertical-align: middle;/>未知,<img class=jc-formula data-tex={ X }_{ 1 },{ X }_{ 2 },{ X }_{ 3 } src=https://huaweicloudobs.ahjxjy.cn/4FF77F2383FA30F4DFAC4C0C4AF2E219.png style=vertical-align: middle;/>为其样本,下列各项不是 统计量的是
①
<img class=jc-formula data-tex=\frac { 1 }{ { \sigma }^{ 2 } } ({ X }_{ 1 }^{ 2 }+{ X }_{ 2 }^{ 2 }+{ X }_{ 3 }^{ 2 }) src=https://huaweicloudobs.ahjxjy.cn/BF31734B07ABA2B89563EB8446340FDB.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex={ X }_{ 1 }+3\mu \quad src=https://huaweicloudobs.ahjxjy.cn/5192835F8320C3E0CCC7F57B09D42755.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=max({ X }_{ 1 }{ ,X }_{ 2 },{ X }_{ 3 }) src=https://huaweicloudobs.ahjxjy.cn/920DB46E711859C1EF3DA8FA1D37AB7D.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=\frac { 1 }{ 3 } ({ X }_{ 1 }+{ X }_{ 2 }+{ X }_{ 3 })\quad src=https://huaweicloudobs.ahjxjy.cn/BEACA87C54812DAB7578055979EAA505.png style=vertical-align: middle;/>
【单选题】
设<img class=jc-formula data-tex={ F }_{ 1 }(x) src=https://huaweicloudobs.ahjxjy.cn/D8189C416F4BE785AA3C27D458B4313A.png style=vertical-align: middle;/>和<img class=jc-formula data-tex={ F }_{ 2 }(x) src=https://huaweicloudobs.ahjxjy.cn/1A4A59877F0C0C0F9978A47DC502C645.png style=vertical-align: middle;/>分别为随机变量<img class=jc-formula data-tex={ X }_{ 1 } src=https://huaweicloudobs.ahjxjy.cn/DA66F1A424E4031AEED284B5B6FE9A43.png style=vertical-align: middle;/>和<img class=jc-formula data-tex={ X }_{ 2 } src=https://huaweicloudobs.ahjxjy.cn/C81198C92D6C928414D7B3FD41B9B1FB.png style=vertical-align: middle;/>的分布函数,为使<img class=jc-formula data-tex={ F(x)=aF }_{ 1 }(x)-b{ F }_{ 2 }(x) src=https://huaweicloudobs.ahjxjy.cn/B913FD48D80BD4E167F0226DC49FAE0D.png style=vertical-align: middle;/>是某一随机变量的分布函数,在下列给定的各组值中应取
①
<img class=jc-formula data-tex=a=\frac { 3 }{ 5 } ,b=-\frac { 2 }{ 5 } src=https://huaweicloudobs.ahjxjy.cn/E75EDBF43B35D3C326A48C10FB9DC252.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=a=\frac { 2 }{ 3 } ,b=\frac { 2 }{ 3 } src=https://huaweicloudobs.ahjxjy.cn/3933081361337122FEBD37126A831869.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=a=\frac { 1 }{ 2 } ,b=\frac { 3 }{ 2 } src=https://huaweicloudobs.ahjxjy.cn/749D2105CE67E8975F58B1E394788EF8.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=a=\frac { 1 }{ 2 } ,b=-\frac { 1 }{ 2 } src=https://huaweicloudobs.ahjxjy.cn/B2C0B2D866E7A72DF28582691B6E71E0.png style=vertical-align: middle;/>
【单选题】
设随机变量<img class=jc-formula data-tex=\Chi \sim N(0,,1) src=https://huaweicloudobs.ahjxjy.cn/DFE0A2227AA81DF0DE5932390507D429.png style=vertical-align: middle;/>,X的分布函数为<img class=jc-formula data-tex=\phi (x) src=https://huaweicloudobs.ahjxjy.cn/5018A48A97FBDEAFED5147C5150F70A3.png style=vertical-align: middle;/>,则<img class=jc-formula data-tex=P(\left| X \right| 2) src=https://huaweicloudobs.ahjxjy.cn/84EB141D9A30B7BA9B748F0CE43B31F5.png style=vertical-align: middle;/>的值为
①
<img class=jc-formula data-tex=2\left[ 1-\phi (2) \right] src=https://huaweicloudobs.ahjxjy.cn/1790E87889194815A84890F2C24D912F.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=2\phi (2)-1 src=https://huaweicloudobs.ahjxjy.cn/66E3AD4ED7467EC148F90DDAF6123574.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=2-\phi (2) src=https://huaweicloudobs.ahjxjy.cn/DABEE0F4766062E9EC14E2FA3FE29809.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=1-2\phi (2) src=https://huaweicloudobs.ahjxjy.cn/AE385B5AFD69AB78DD3A867D56396753.png style=vertical-align: middle;/>
【单选题】
若<img class=jc-formula data-tex=\int { f\left( x \right) } dx={ e }^{ x }+C src=https://huaweicloudobs.ahjxjy.cn/1C031C6D574105A4E5C1ECB676F9A40E.png style=vertical-align: middle;/>,则<img class=jc-formula data-tex=f^{ \prime }\left( x \right) = src=https://huaweicloudobs.ahjxjy.cn/251DFE29198B1CB3A839957C188AB2C1.png style=vertical-align: middle;/>( )
①
<img class=jc-formula data-tex={ e }^{ x } src=https://huaweicloudobs.ahjxjy.cn/00FC70E398ABF6B185393D92CDA0D7CF.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex={ e }^{ x } src=https://huaweicloudobs.ahjxjy.cn/00FC70E398ABF6B185393D92CDA0D7CF.png style=vertical-align: middle;/>-1
③
<img class=jc-formula data-tex={ e }^{ x } src=https://huaweicloudobs.ahjxjy.cn/00FC70E398ABF6B185393D92CDA0D7CF.png style=vertical-align: middle;/>+C
④
<img class=jc-formula data-tex={ e }^{ x } src=https://huaweicloudobs.ahjxjy.cn/00FC70E398ABF6B185393D92CDA0D7CF.png style=vertical-align: middle;/>dx
【单选题】
设总体X服从正态 <img class=jc-formula data-tex=N(\mu ,\sigma ^{ 2 }) src=https://huaweicloudobs.ahjxjy.cn/AD993E1528D720589A720804B5105B62.png style=vertical-align: middle;/>分布,<img class=jc-formula data-tex=X_1,X_2,\cdots,X_n src=https://huaweicloudobs.ahjxjy.cn/9CB95684AF38E06A798542D3F8B3E3D7.png style=vertical-align: middle;/> 是来自X的简单随机样本,为使 <img class=jc-formula data-tex=A\sum _{ i=1 }^{ n }{ |X_{ i }-\overline { X } | } src=https://huaweicloudobs.ahjxjy.cn/B1F78F20088C852A20F0B9A79EB879F9.png style=vertical-align: middle;/>是<img class=jc-formula data-tex=\sigma src=https://huaweicloudobs.ahjxjy.cn/6C679D32B2AFEAC468E1A6A546D598E3.png style=vertical-align: middle;/> 的无偏估计量,则A的值为
①
<img class=jc-formula data-tex=\frac { 1 }{ \sqrt { n } } src=https://huaweicloudobs.ahjxjy.cn/0159BFD938FCE0D37A92E43005EBE940.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=\frac { 1 }{ n } src=https://huaweicloudobs.ahjxjy.cn/78D4CCDDB5590E6632361E730EE81073.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=\frac { 1 }{ \sqrt { n-1 } } src=https://huaweicloudobs.ahjxjy.cn/C34F54AA8117E47F9D22AE951E93AEA7.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=\sqrt { \frac { \pi }{ 2n(n-1) } } src=https://huaweicloudobs.ahjxjy.cn/ECD912FC37CDC88923C3828625C0BD1F.png style=vertical-align: middle;/>
【单选题】
公式“(<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />p<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto />q)<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/F388E7EE9892B38FECEEB653227F230A.png data-tex=\mapsto /> (<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/09825764C15E56B1CFE3099F64BC5193.png data-tex=\neg />q<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/7BA9C8923F2F9C5684519175C6A722C4.png data-tex=\vee />p)”的主析取范式为:
①
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/9ABE9036703B48C5242D684BFF1D0CB2.png data-tex=\Sigma />(0, 2, 3).
②
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/9ABE9036703B48C5242D684BFF1D0CB2.png data-tex=\Sigma />(0, 1, 2).
③
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/9ABE9036703B48C5242D684BFF1D0CB2.png data-tex=\Sigma />(0, 1, 3).
④
<img class=jc-formula style=vertical-align: middle; src=https://huaweicloudobs.ahjxjy.cn/9ABE9036703B48C5242D684BFF1D0CB2.png data-tex=\Sigma />(1, 2, 3).