【单选题】
若<img class=jc-formula data-tex=\int { f\left( x \right) dx={ x }^{ 2 } } +C src=https://huaweicloudobs.ahjxjy.cn/C0D981B86C70758C1C98445DFAB794A8.png style=vertical-align: middle;/>,则<img class=jc-formula data-tex=f^{ \prime }\left( x \right) src=https://huaweicloudobs.ahjxjy.cn/26D198C4225DCDBF49E37926C6480B23.png style=vertical-align: middle;/>=( )
【单选题】
下列定积分等于0的是( )
①
<img class=jc-formula data-tex=\int _{ 0 }^{ 2 }{ { x }^{ 2 } } \cos { xdx } src=https://huaweicloudobs.ahjxjy.cn/6C585115F7059B70D1A34FDD038EFF7E.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=\int _{ -1 }^{ 1 }{ (x+\sin { x) } } dx src=https://huaweicloudobs.ahjxjy.cn/5AB9CCA2992AC0BC7819B0E2881C1ED4.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=\int _{ -1 }^{ 1 }{ x\sin { x } } dx src=https://huaweicloudobs.ahjxjy.cn/C4D46D692EE0DC53FEB4EE8EABBE5702.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=\int _{ -1 }^{ 1 }{ ({ e }^{ x } } +x) src=https://huaweicloudobs.ahjxjy.cn/F734B718E9C9B1A50C5AE68EAD626E35.png style=vertical-align: middle;/>
【单选题】
设<img class=jc-formula data-tex={ x }_{ n }={ (\sqrt { n } ) }^{ { (-1) }^{ n } } src=https://huaweicloudobs.ahjxjy.cn/250BBB4F504F7016C1209A5AF109FE73.png style=vertical-align: middle;/>,则数列<img class=jc-formula data-tex={ x }_{ n } src=https://huaweicloudobs.ahjxjy.cn/91CDE9AAC5253792FC0C3EB6B6DC54D5.png style=vertical-align: middle; width: 29px; height: 29px; width=29 height=29/>( )
【单选题】
<img class=jc-formula data-tex=\lim _{ x\rightarrow 0 }{ \frac { x-\sin { x } }{ { x }^{ 3 } } } = src=https://huaweicloudobs.ahjxjy.cn/DC32F13C5659A0AF22225DB223B3E5CF.png style=vertical-align: middle;/>( )
②
<img class=jc-formula data-tex=\frac { 1 }{ 2 } src=https://huaweicloudobs.ahjxjy.cn/8062EA96665D314E0B363418A4874F48.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=\frac { 1 }{ 3 } src=https://huaweicloudobs.ahjxjy.cn/1A4C13AF1ABFF064A3C1DC1395562228.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=\frac { 1 }{ 6 } src=https://huaweicloudobs.ahjxjy.cn/CEF961B2FDE47A2221200799932CFC46.png style=vertical-align: middle;/>
【单选题】
设<img class=jc-formula data-tex=f\left( x \right) src=https://huaweicloudobs.ahjxjy.cn/FB6E53A56CB8DA138AA7D1A4EBCF7519.png style=vertical-align: middle;/>为偶函数,且<img class=jc-formula data-tex=f^{ \prime }\left( 0 \right) src=https://huaweicloudobs.ahjxjy.cn/046BAED46CDFFA350BFE6BD753DE19E3.png style=vertical-align: middle;/>存在,则导数值为( )
【单选题】
曲线<img class=jc-formula data-tex={ y }^{ 2 }=2x src=https://huaweicloudobs.ahjxjy.cn/1CD475976368DEE1B189A50CD20F326F.png style=vertical-align: middle;/>和<img class=jc-formula data-tex=y=x-4 src=https://huaweicloudobs.ahjxjy.cn/4ED1CE84208DE671962AB75231AC5B71.png style=vertical-align: middle;/>所围图形的面积为( )
【单选题】
设<img class=jc-formula data-tex=f\left( x \right) src=https://huaweicloudobs.ahjxjy.cn/FB6E53A56CB8DA138AA7D1A4EBCF7519.png style=vertical-align: middle;/>是奇函数,除x=0外处处连续,x=0是其第一类间断点,则<img class=jc-formula data-tex=\int _{ 0 }^{ x }{ f\left( t \right) } dt src=https://huaweicloudobs.ahjxjy.cn/E3BC15860A05DCF871E29178689D4578.png style=vertical-align: middle;/>是( )
【单选题】
设<img class=jc-formula data-tex=f\left( x \right) src=https://huaweicloudobs.ahjxjy.cn/FB6E53A56CB8DA138AA7D1A4EBCF7519.png style=vertical-align: middle;/>在<img class=jc-formula data-tex={ x }_{ 0 } src=https://huaweicloudobs.ahjxjy.cn/ABCC8DCF3CB54080A21570A5BADC633E.png style=vertical-align: middle;/>处可导,则<img class=jc-formula data-tex=\lim _{ h\rightarrow 0 }{ \frac { f\left( { x }_{ 0 }-h \right) -f\left( { x }_{ 0 } \right) }{ h } } = src=https://huaweicloudobs.ahjxjy.cn/114D1182A572A98FFD54B6C4066BEC8A.png style=vertical-align: middle;/>( ).
①
2<img class=jc-formula data-tex=f^{ \prime }\left( { x }_{ 0 } \right) src=https://huaweicloudobs.ahjxjy.cn/B5876FA4E8E95C0AB96A2BDEDFEBD976.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=f^{ \prime }\left( { x }_{ 0 } \right) src=https://huaweicloudobs.ahjxjy.cn/B5876FA4E8E95C0AB96A2BDEDFEBD976.png style=vertical-align: middle;/>
③
-<img class=jc-formula data-tex=f^{ \prime }\left( { x }_{ 0 } \right) src=https://huaweicloudobs.ahjxjy.cn/B5876FA4E8E95C0AB96A2BDEDFEBD976.png style=vertical-align: middle;/>
【单选题】
已知<img class=jc-formula data-tex=f^{ \prime }\left( { e }^{ x } \right) =x{ e }^{ -x } src=https://huaweicloudobs.ahjxjy.cn/A2D866EF9B5FBA9665A83096D0820160.png style=vertical-align: middle;/>,且<img class=jc-formula data-tex=f\left( 1 \right) =0 src=https://huaweicloudobs.ahjxjy.cn/8BC981E4AD6049DFBA17D01C5FB4B736.png style=vertical-align: middle;/>,则<img class=jc-formula data-tex=f\left( x \right)= src=https://huaweicloudobs.ahjxjy.cn/E5E52C6F5B52EE1A248B89A09EC905E4.png style=vertical-align: middle;/>( )
①
<img class=jc-formula data-tex={ e }^{ x } src=https://huaweicloudobs.ahjxjy.cn/00FC70E398ABF6B185393D92CDA0D7CF.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=\ln { x } src=https://huaweicloudobs.ahjxjy.cn/BADB4AEBC55B8DCE12993FC806ECF668.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex={ (\ln { x) } }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/395F2A3C69CCBAB7F79F9B36E0131FCC.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=\frac { 1 }{ 2 } { (\ln { x) } }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/E2174913DF2DD84E322B672A8C02A70A.png style=vertical-align: middle;/>
【单选题】
曲线<img class=jc-formula data-tex=y={ x }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/BF4DD3C111FFFF78301B83C48CDFA9C0.png style=vertical-align: middle;/>及<img class=jc-formula data-tex=y=\sqrt { x } src=https://huaweicloudobs.ahjxjy.cn/7B898D5D9D22F6815B646EE94838A878.png style=vertical-align: middle;/>所围平面图形绕x轴旋转而成的旋转体体积是( )
②
<img class=jc-formula data-tex=\frac { 3 }{ 2 } src=https://huaweicloudobs.ahjxjy.cn/2FD121116CDA5B1DBFCC49A3F05307BA.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=\frac { 3 }{ 10 } src=https://huaweicloudobs.ahjxjy.cn/040F517091EE4731FF44C456258B5490.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=\frac { 3\pi }{ 10 } src=https://huaweicloudobs.ahjxjy.cn/C3259FEBDA1F22C6B0743E87570D4A67.png style=vertical-align: middle;/>