已知<imgwidth="18"height="18"v:shapes="_x0000_i1035"src="http://wljy.whut.edu.cn/uploadfiles/word/xxds05.files/image004.png">为<imgwidth="14"height="16"v:shapes="_x0000_i1036"src="http://wljy.whut.edu.cn/uploadfiles/word/xxds05.files/image002.png">阶方阵,以下说法错误的是()
①
<imgwidth="150"height="34"v:shapes="_x0000_i1037"src="http://wljy.whut.edu.cn/uploadfiles/word/xxds05.files/image006.png">
②
<imgwidth="18"height="18"v:shapes="_x0000_i1038"src="http://wljy.whut.edu.cn/uploadfiles/word/xxds05.files/image004.png">的全部特征向量为<imgwidth="118"height="28"v:shapes="_x0000_i1039"src="http://wljy.whut.edu.cn/uploadfiles/word/xxds05.files/image008.png">的全部解
③
若<imgwidth="18"height="18"v:shapes="_x0000_i1040"src="http://wljy.whut.edu.cn/uploadfiles/word/xxds05.files/image004.png">有<imgwidth="14"height="16"v:shapes="_x0000_i1041"src="http://wljy.whut.edu.cn/uploadfiles/word/xxds05.files/image002.png">个互不相同的特征值,则必有<imgwidth="14"height="16"v:shapes="_x0000_i1042"src="http://wljy.whut.edu.cn/uploadfiles/word/xxds05.files/image002.png">个线性无关的特征向量
④
若<imgwidth="18"height="18"v:shapes="_x0000_i1043"src="http://wljy.whut.edu.cn/uploadfiles/word/xxds05.files/image004.png">可逆,而矩阵<imgwidth="18"height="18"v:shapes="_x0000_i1044"src="http://wljy.whut.edu.cn/uploadfiles/word/xxds05.files/image004.png">的属于特征值<imgwidth="16"height="20"v:shapes="_x0000_i1045"src="http://wljy.whut.edu.cn/uploadfiles/word/xxds05.files/image010.png">的特征向量也是矩阵<imgwidth="28"height="22"v:shapes="_x0000_i1046"src="http://wljy.whut.edu.cn/uploadfiles/word/xxds05.files/image012.png">属于特征值<imgwidth="19"height="42"v:shapes="_x0000_i1047"src="http://wljy.whut.edu.cn/uploadfiles/word/xxds05.files/image014.png">的特征向量