【判断题】
设总体X的期望EX=μ已知,方差DX=σ2未知,X1,…,Xn为其一个样本,则<img class=jc-formula data-tex=\bar { X } =\frac { 1 }{ n } \sum _{ n }^{ 1 }{ X_{ i } } src=https://huaweicloudobs.ahjxjy.cn/F558493A70A8389C0953B73534F944DF.png style=vertical-align: middle;/>是统计量。
【判断题】
设总体X的期望EX=μ已知,方差DX=σ2未知,X1,…,Xn为其一个样本,则<img class=jc-formula data-tex=\frac { { (n-1)S }^{ 2 } }{ { \sigma }^{ 2 } } src=https://huaweicloudobs.ahjxjy.cn/F54E8DB6412322143BDECAB62C4734AC.png style=vertical-align: middle;/>是统计量。
【判断题】
设总体X的期望EX=μ已知,方差DX=σ2未知,X1,…,Xn为其一个样本,则<img class=jc-formula data-tex=max({ X }_{ 1 },...,{ X }_{ n }) src=https://huaweicloudobs.ahjxjy.cn/7022BDFB62F6F2BD46CB6BB4DADDEA36.png style=vertical-align: middle;/>是统计量。
【单选题】
设<img class=jc-formula data-tex={ X }_{ 1 },{ X }_{ 2 },\cdots { X }_{ n } src=https://huaweicloudobs.ahjxjy.cn/566B8BC2FC4C2A51D79505D3C76655A0.png style=vertical-align: middle;/><img class=jc-formula data-tex={ X }_{ 1 },{ X }_{ 2 },\cdots { X }_{ n } src=https://huaweicloudobs.ahjxjy.cn/566B8BC2FC4C2A51D79505D3C76655A0.png style=vertical-align: middle;/>为来自正态总体<img class=jc-formula data-tex=N(\mu ,{ \sigma }^{ 2 }) src=https://huaweicloudobs.ahjxjy.cn/B48DEDE893A08C6E512BAB4F26410D01.png style=vertical-align: middle;/>简单随机样本,<img class=jc-formula data-tex=\overline { X } src=https://huaweicloudobs.ahjxjy.cn/D559D2BD167F21A01FFCD591C2AF4457.png style=vertical-align: middle;/>是样本均值,记<img class=jc-formula data-tex={ S }_{ 1 }^{ 2 }=\frac { 1 }{ n-1 } \sum _{ i=1 }^{ n }{ { ({ X }_{ i }-\overline { X } ) }^{ 2 } } src=https://huaweicloudobs.ahjxjy.cn/18E43E851BC47ACC196D5785999971D4.png style=vertical-align: middle;/>,<img class=jc-formula data-tex={ S }_{ 2 }^{ 2 }=\frac { 1 }{ n } \sum _{ i=1 }^{ n }{ { ({ X }_{ i }-\overline { X } ) }^{ 2 } } src=https://huaweicloudobs.ahjxjy.cn/7CA54C41F5A36E5793633F96993480EA.png style=vertical-align: middle;/>,<img class=jc-formula data-tex={ S }_{ 3 }^{ 2 }=\frac { 1 }{ n-1 } \sum _{ i=1 }^{ n }{ { ({ X }_{ i }-\mu ) }^{ 2 } } src=https://huaweicloudobs.ahjxjy.cn/0E2B50AF7209F35106342BF95E09DA4C.png style=vertical-align: middle;/>,<img class=jc-formula data-tex={ S }_{ 4 }^{ 2 }=\frac { 1 }{ n } \sum _{ i=1 }^{ n }{ { ({ X }_{ i }-\mu ) }^{ 2 } } src=https://huaweicloudobs.ahjxjy.cn/8D838364E08ECACB5EE3A8F8F6BB9E43.png style=vertical-align: middle;/>,则服从自由度为n-1的t分布的随机变量是
①
<img class=jc-formula data-tex=t=\frac { \overline { X } -\mu }{ { S_{ 1 } }/\sqrt { n-1 } } src=https://huaweicloudobs.ahjxjy.cn/BE2908C0E8DA4200674E5EDE9F09B1C4.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=t=\frac { \overline { X } -\mu }{ { S_{ 2 } }/\sqrt { n-1 } } src=https://huaweicloudobs.ahjxjy.cn/DB2829931E41FDA3436FD40839B22783.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=t=\frac { \overline { X } -\mu }{ { S_{ 3 } }/\sqrt { n-1 } } src=https://huaweicloudobs.ahjxjy.cn/CFB5975E17FE00E3BBB4A0CBB4292787.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=t=\frac { \overline { X } -\mu }{ { S_{ 4 } }/\sqrt { n-1 } } src=https://huaweicloudobs.ahjxjy.cn/525851C7FF632788FB386C9CBB49AEEA.png style=vertical-align: middle;/>
【判断题】
设总体X的期望EX=μ已知,方差DX=σ2未知,X1,…,Xn为其一个样本,则<img class=jc-formula data-tex=\frac { 1 }{ 2 } ({ X }_{ 1 }+{ X }_{ 2 })-\mu src=https://huaweicloudobs.ahjxjy.cn/DD0DD75E5D41B1A95055BB9DC8F95461.png style=vertical-align: middle;/>是统计量。
【判断题】
设X1,…,Xn为来自总体N(μ,σ2)的样本,则<img class=jc-formula data-tex={ \chi }^{ 2 }=\frac { 1 }{ { \sigma }^{ 2 } } \sum _{ i=1 }^{ n }{ { (X_{ i }-\bar { X } ) }^{ 2 } } src=https://huaweicloudobs.ahjxjy.cn/152A7D8518916692F688A86ACA44A8AE.png style=vertical-align: middle;/>服从自由度为n-1的<img class=jc-formula data-tex={ \chi }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/5ED6EFB7F1932D97851FCABCB0F670F8.png style=vertical-align: middle;/>分布。
【判断题】
设总体X的期望EX=μ已知,方差DX=σ2未知,X1,…,Xn为其一个样本,则<img class=jc-formula data-tex=\frac { \bar { X } -\mu }{ \sigma /\sqrt { n } } src=https://huaweicloudobs.ahjxjy.cn/AC17CA4B6C58ED0F621C64F418724920.png style=vertical-align: middle;/>是统计量。
【单选题】
X服从正态分布,EX=-1,<img class=jc-formula data-tex=E{ X }^{ 2 }=5 src=https://huaweicloudobs.ahjxjy.cn/63C872F64284C5940AC78AC3B5AD4CD0.png style=vertical-align: middle;/>,<img class=jc-formula data-tex=({ X }_{ 1 },{ X }_{ 2 },\cdots ,{ X }_{ n }) src=https://huaweicloudobs.ahjxjy.cn/027BA040849F6CC5B76B05801410461B.png style=vertical-align: middle;/>是来自总体X的一个样本,则<img class=jc-formula data-tex=\overline { X } =\frac { 1 }{ n } \sum _{ i=1 }^{ n }{ { X }_{ i } } src=https://huaweicloudobs.ahjxjy.cn/3E216A2E02163E42CB1C350488DA4FE1.png style=vertical-align: middle;/>服从的分布为
①
<img class=jc-formula data-tex=N(-1,\frac { 5 }{ n } ) src=https://huaweicloudobs.ahjxjy.cn/B4366FC0420ACCA6D1BCC44E62C3DE05.png style=vertical-align: middle;/>
②
<img class=jc-formula data-tex=N(-1,\frac { 4 }{ n } ) src=https://huaweicloudobs.ahjxjy.cn/E8A0FFE6935D7101D40908F97C1A95E5.png style=vertical-align: middle;/>
③
<img class=jc-formula data-tex=N(-\frac { 1 }{ n } ,\frac { 5 }{ n } ) src=https://huaweicloudobs.ahjxjy.cn/C9E8E4607E90A4F959C2D64BC53509DD.png style=vertical-align: middle;/>
④
<img class=jc-formula data-tex=N(-\frac { 1 }{ n } ,\frac { 4 }{ n } ) src=https://huaweicloudobs.ahjxjy.cn/24B60E9ACD335A933DA340A960FB0C92.png style=vertical-align: middle;/>
【判断题】
样本方差<img class=jc-formula data-tex=S^2=\frac{1}{n-1}\sum_{i=1}^n{(X_i-\overline{X})^2} src=https://huaweicloudobs.ahjxjy.cn/D58CFC0E67B64DA192511DD78133ECF1.png style=vertical-align: middle;/>是总体方差DX的无偏估计.
【单选题】
设总体<img class=jc-formula data-tex=X\~ N(\mu ,{ \sigma }^{ 2 }),{ X }_{ 1 },\cdots ,{ X }_{ n } src=https://huaweicloudobs.ahjxjy.cn/77E278627EEB6B30EC2C452582C7E8CD.png style=vertical-align: middle;/>为抽取样本,则<img class=jc-formula data-tex=\frac { 1 }{ n } \sum _{ i=1 }^{ n }{ { ({ X }_{ i }-\overline { X } ) }^{ 2 } } src=https://huaweicloudobs.ahjxjy.cn/28E1CC7702DA75C787BB7DD7A0825DA1.png style=vertical-align: middle;/>是
①
<img class=jc-formula data-tex=\mu src=https://huaweicloudobs.ahjxjy.cn/44B6A27E434C1345C3CEEB7A5249665D.png style=vertical-align: middle; width: 21px; height: 27px; width=21 height=27/>的无偏估计
②
<img class=jc-formula data-tex={ \sigma }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/0CF3AA226894411774EF0AB7244924B1.png style=vertical-align: middle;/>的无偏估计
③
<img class=jc-formula data-tex=\mu src=https://huaweicloudobs.ahjxjy.cn/44B6A27E434C1345C3CEEB7A5249665D.png width=21 height=27 style=font-family: 宋体; font-size: 14px; white-space: normal; vertical-align: middle; width: 21px; height: 27px;/>的矩估计
④
<img class=jc-formula data-tex={ \sigma }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/0CF3AA226894411774EF0AB7244924B1.png style=vertical-align: middle;/>的矩估计