【单选题】【消耗次数:1】
()曾说:“在无产阶级和资产阶级的斗争所经历的各个发展阶段上,共产党人始终代表整个运动的利益。”(单选 2 分)
马克思
布迪厄
恩格斯
凯恩斯
参考答案:
复制
纠错
相关题目
【单选题】 《共产党宣言》指出:共产党由无产阶级中最坚决、最先进的分子组成,始终代表整个无产阶级和工人运动的利益,共产党人可以把自己的理论概括为一句话:( )。
①  为人民群众服务
②  实现社会主义
③  消灭私有制
④  实现共产主义
【单选题】 马克思、恩格斯在( )一书中指出,共产党人的最终目的是消灭阶级,消灭剥削,建立共产主义社会。
①  《共产党宣言》
②  《关于费尔巴哈的提纲》
③  《德意志意识形态》
【判断题】 马克思、恩格斯在《共产党宣言》讲得非常清楚,工人革命的第一步就是要使无产阶级上升为统治阶级。
①  正确
②  错误
【单选题】 无产阶级反对资产阶级的斗争中,最具决定意义的是()
①  经济斗争
②  政治斗争
③  理论斗争
④  议会斗争
【判断题】 马克思主义认为,无产阶级运动是为少数人谋利益的独立的运动,无产阶级政党是为少数人谋利益的政党。
①  正确
②  错误
【单选题】 无产阶级政党的雏型是马克思、恩格斯于1847年在英国伦敦建立的()
①  共产主义青年同盟
②  共产主义小组
③  共产国际
④  共产主义者同盟
【单选题】 14.无产阶级反对资产阶级的斗争中,最具决定意义的是()
①  理论斗争
②  议会斗争
③  经济斗争
④  政治斗争
【单选题】 当我们说马克思主义是无产阶级争取自身解放和整个人类解放的科学理论,是关于无产阶级斗争的性质、目的和解放条件的学说,是从它的()
①  阶级属性讲
②  研究的对象讲
③  研究的主要内容讲
④  创造者、继承者的认识成果
【判断题】 从马克思主义的阶级属性讲,它是无产阶级争取自身解放和整个人类解放的科学理论,是关于无产阶级斗争的性质、目的和解放条件的学说。
①  正确
②  错误
【判断题】 恩格斯在《英国工人阶级状况》一书中描述了资产阶级和无产阶级之间的相互关系以及这两个阶级之间的斗争的必然性( )。
①  正确
②  错误
随机题目
【单选题】 在假设检验中,原假设H0,备择假设H1,则第二类错误是指
①  H0为真,接受H0
②  H0不真,接受H0
③  H0为真,拒绝H1
④  H0不真,拒绝H0
【单选题】 在一个确定的假设检验中,与判断结果相关的因素有
①  样本值与样本容量
②  显著性水平<img class=jc-formula data-tex=\alpha src=https://huaweicloudobs.ahjxjy.cn/E64A8F14198F6798ED287C1AADDD564A.png style=vertical-align: middle;/>
③  检验统计量
④  A,B,C同时成立
【单选题】 设总体<img class=jc-formula data-tex=X\sim N(\mu ,\sigma ^{ 2 }) src=https://huaweicloudobs.ahjxjy.cn/6802BDA860FBF69E7F7A9B655FC1D934.png style=vertical-align: middle;/>,<img class=jc-formula data-tex=\mu src=https://huaweicloudobs.ahjxjy.cn/56DD6CB087F3A651DFB7398868944F48.png style=vertical-align: middle;/>和<img class=jc-formula data-tex=\sigma^2 src=https://huaweicloudobs.ahjxjy.cn/44A1572B93BF2E5CAAC0D9C2689397B9.png style=vertical-align: middle;/>均未知,统计假设取为<img class=jc-formula data-tex=H_0:\mu=\mu_0;H_1:\mu \ne\mu_0, src=https://huaweicloudobs.ahjxjy.cn/4ED876F9C746421A0C9A119E4A841005.png style=vertical-align: middle;/>若用t检验法进行假设检验,则在显著性水平<img class=jc-formula data-tex=\alpha src=https://huaweicloudobs.ahjxjy.cn/DEFDC04456737669FDEF7C42924B9B9C.png style=vertical-align: middle;/>之下,拒绝域是
①  <img class=jc-formula data-tex=|t|t_{1-\alpha/2}(n-1) src=https://huaweicloudobs.ahjxjy.cn/41E818E6316D619EB7C24F23D7C09888.png style=vertical-align: middle;/>
②  <img class=jc-formula data-tex=|t|\ge t_{1-\alpha/2}(n-1) src=https://huaweicloudobs.ahjxjy.cn/CF47FC0B9BF275141E9E9F1531877DB4.png style=vertical-align: middle;/>
③  <img class=jc-formula data-tex=|t|\ge t_{1-\alpha}(n-1) src=https://huaweicloudobs.ahjxjy.cn/DB7603FF47C4CFB1328D8A29C0269F17.png style=vertical-align: middle;/>
④  |t| -t1-a(n-1)
【单选题】 在对单个正态总体均值的假设检验中,当总体方差已知时,选用
①  t检验法
②  <img class=jc-formula data-tex=\mu \quad src=https://huaweicloudobs.ahjxjy.cn/72143C62DAAAA39AB69A5506838561CA.png style=vertical-align: middle;/>检验法
③  F检验法
④  <img class=jc-formula data-tex={ \chi }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/5ED6EFB7F1932D97851FCABCB0F670F8.png style=vertical-align: middle;/>检验法
【判断题】 样本方差<img class=jc-formula data-tex=S^2=\frac{1}{n}\sum_{i=1}^n{(X_i-\overline{X})^2} src=https://huaweicloudobs.ahjxjy.cn/75F306490A2A7666C0CB6860F2CAABDB.png style=vertical-align: middle;/>是总体方差DX的无偏估计
①  正确
②  错误
【单选题】 设<img class=jc-formula data-tex={ x }_{ 1 },{ x }_{ 2 },\cdots ,{ x }_{ n } src=https://huaweicloudobs.ahjxjy.cn/DE2C6E0567333C65CDC6AB7F555E2FC7.png style=vertical-align: middle;/>为正态总体<img class=jc-formula data-tex=你N(\mu ,4) src=https://huaweicloudobs.ahjxjy.cn/CC85E3FC72A06153B8AB828C216D5A85.png style=vertical-align: middle;/>的一个样本,<img class=jc-formula data-tex=\overline { x } src=https://huaweicloudobs.ahjxjy.cn/BCCD874E19CEDFF42D493CA7A47C4E90.png style=vertical-align: middle;/>表示样本均值,则<img class=jc-formula data-tex=\mu \quad src=https://huaweicloudobs.ahjxjy.cn/72143C62DAAAA39AB69A5506838561CA.png style=vertical-align: middle;/>的置信度为<img class=jc-formula data-tex=1-\alpha src=https://huaweicloudobs.ahjxjy.cn/0D7D8051C64554652E5FBC5A5D64CCE9.png style=vertical-align: middle;/>的置信区间为
①  <img class=jc-formula data-tex=(\overline { x } -{ \mu }_{ \sfrac { \alpha }{ 2 } }\frac { 4 }{ \sqrt { n } } ,\overline { x } +{ \mu }_{ \sfrac { \alpha }{ 2 } }\frac { 4 }{ \sqrt { n } } ) src=https://huaweicloudobs.ahjxjy.cn/F33E4873B4251F8943C2862757F00F41.png style=vertical-align: middle;/>
②  <img class=jc-formula data-tex=(\overline { x } -{ \mu }_{ \sfrac { 1-\alpha }{ 2 } }\frac { 2 }{ \sqrt { n } } ,\overline { x } +{ \mu }_{ \sfrac { \alpha }{ 2 } }\frac { 2 }{ \sqrt { n } } ) src=https://huaweicloudobs.ahjxjy.cn/E473853FCA813ABD18C5360B410C0EAC.png style=vertical-align: middle;/>
③  <img class=jc-formula data-tex=(\overline { x } -{ \mu }_{ \alpha }\frac { 2 }{ \sqrt { n } } ,\overline { x } +{ \mu }_{ \alpha }\frac { 2 }{ \sqrt { n } } ) src=https://huaweicloudobs.ahjxjy.cn/6DB869CE7F1D702A8DAEA9DF95D1B9B7.png style=vertical-align: middle;/>
④  <img class=jc-formula data-tex=(\overline { x } -{ \mu }_{ \sfrac { \alpha }{ 2 } }\frac { 2 }{ \sqrt { n } } ,\overline { x } +{ \mu }_{ \sfrac { \alpha }{ 2 } }\frac { 2 }{ \sqrt { n } } ) src=https://huaweicloudobs.ahjxjy.cn/67FCADC0516F3C051F2DECE09E9DE4B2.png style=vertical-align: middle;/>
【判断题】 样本均值<img class=jc-formula data-tex=\overline { X } =\frac { 1 }{ n } \sum _{ i=1 }^{ n }{ X_{ i } } src=https://huaweicloudobs.ahjxjy.cn/4A97A4928F2A921C0B0FEE9BEA031F02.png style=vertical-align: middle;/>是总体均值EX的一致估计.
①  正确
②  错误
【判断题】 样本方差<img class=jc-formula data-tex=S^2=\frac{1}{n-1}\sum_{i=1}^n{(X_i-\overline{X})^2} src=https://huaweicloudobs.ahjxjy.cn/D58CFC0E67B64DA192511DD78133ECF1.png style=vertical-align: middle;/>是总体方差DX的无偏估计.
①  正确
②  错误
【单选题】 设<img class=jc-formula data-tex={ X }_{ 1 }{ ,X }_{ 2 }{ ,\cdots ,X }_{ n }\quad src=https://huaweicloudobs.ahjxjy.cn/DBF1E4597DFB758D00FD3BE5BEC42B5A.png style=vertical-align: middle;/>为<img class=jc-formula data-tex=X src=https://huaweicloudobs.ahjxjy.cn/18E2773B1E2835B209E7E51B85285E80.png style=vertical-align: middle;/>总体的一个随机样本,<img class=jc-formula data-tex=E(X)=\mu ,D(X)={ \sigma }^{ 2 }, src=https://huaweicloudobs.ahjxjy.cn/76363837713BC0EA3C7D5B8DE88D2A23.png style=vertical-align: middle;/><img class=jc-formula data-tex=\hat { \theta } ^{ 2 }=C\sum _{ i=1 }^{ n-1 }{ { ({ X }_{ i+1 }-{ X }_{ i }) }^{ 2 } } src=https://huaweicloudobs.ahjxjy.cn/D1E258883B355BBE6C9AE03C4C850EB3.png style=vertical-align: middle;/>为 <img class=jc-formula data-tex={ \sigma }^{ 2 } src=https://huaweicloudobs.ahjxjy.cn/0CF3AA226894411774EF0AB7244924B1.png style=vertical-align: middle;/>的无偏估计,C=
①  <img class=jc-formula data-tex=\frac { 1 }{ n } src=https://huaweicloudobs.ahjxjy.cn/935DBCDBF7AAD9823197D86C587EC3A5.png style=vertical-align: middle;/>
②  <img class=jc-formula data-tex=\frac { 1 }{ n-1 } src=https://huaweicloudobs.ahjxjy.cn/7727714B040BDCFF96E1DCFCEFD8EBF0.png style=vertical-align: middle;/>
③  <img class=jc-formula data-tex=\frac { 1 }{ 2(n-1) } src=https://huaweicloudobs.ahjxjy.cn/DFF9119B78C5726FC7943427E65E0C9A.png style=vertical-align: middle;/>
④  <img class=jc-formula data-tex=\frac { 1 }{ n-2 } src=https://huaweicloudobs.ahjxjy.cn/247E111752A300C6EC448FE5CA92D90B.png style=vertical-align: middle;/>
【单选题】 设<img class=jc-formula data-tex=\hat { \theta } src=https://huaweicloudobs.ahjxjy.cn/9CAB6F870853DAF6FBCDD58C16DD47B2.png style=vertical-align: middle;/>是未知参数<img class=jc-formula data-tex=\theta src=https://huaweicloudobs.ahjxjy.cn/9B0901CB3A90E03AB9AFCDB8A3E9E9ED.png style=vertical-align: middle;/>的一个估计量,若<img class=jc-formula data-tex=E\hat { \theta } \neq \theta src=https://huaweicloudobs.ahjxjy.cn/6F6633DB35E25A5A269C21DBA0A6817E.png style=vertical-align: middle;/>,则<img class=jc-formula data-tex=\hat { \theta } src=https://huaweicloudobs.ahjxjy.cn/9CAB6F870853DAF6FBCDD58C16DD47B2.png style=font-family: 宋体; font-size: 14px; white-space: normal; vertical-align: middle;/>是<img class=jc-formula data-tex=\theta src=https://huaweicloudobs.ahjxjy.cn/9B0901CB3A90E03AB9AFCDB8A3E9E9ED.png style=font-family: 宋体; font-size: 14px; white-space: normal; vertical-align: middle;/>的
①  极大似然估计
②  矩法估计
③  相合估计
④  有偏估计